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Drag and lift forces on a rotating sphere in a
linear shear flow
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(Received 20 August 1997 and in revised form 6 November 1998)

The drag and lift forces acting on a rotating rigid sphere in a homogeneous linear shear
flow are numerically studied by means of a three-dimensional numerical simulation.
The effects of both the fluid shear and rotational speed of the sphere on the drag and
lift forces are estimated for particle Reynolds numbers of 1 6 Rep 6 500.

The results show that the drag forces both on a stationary sphere in a linear shear
flow and on a rotating sphere in a uniform unsheared flow increase with increasing
the fluid shear and rotational speed. The lift force on a stationary sphere in a linear
shear flow acts from the low-fluid-velocity side to the high-fluid-velocity side for low
particle Reynolds numbers of Rep < 60, whereas it acts from the high-velocity side to
the low-velocity side for high particle Reynolds numbers of Rep > 60. The change of
the direction of the lift force can be explained well by considering the contributions of
pressure and viscous forces to the total lift in terms of flow separation. The predicted
direction of the lift force for high particle Reynolds numbers is also examined
through a visualization experiment of an iron particle falling in a linear shear flow of
a glycerin solution. On the other hand, the lift force on a rotating sphere in a uniform
unsheared flow acts in the same direction independent of particle Reynolds numbers.
Approximate expressions for the drag and lift coefficients for a rotating sphere in a
linear shear flow are proposed over the wide range of 1 6 Rep 6 500.

1. Introduction
The motion of particles in turbulence is often seen in air and water flows related to

significant environmental problems such as desertification and air pollution, and also
occurs in many industrial processes associated with particle transport. It is, therefore,
of great practical interest to investigate particle motion both in settling environmental
problems and in designing industrial equipment. In particular, particle motion in a
turbulent boundary layer is influenced by both the fluid shear and particle rotation
which will be induced by the fluid shear and collisions with a solid wall. Therefore it
is also of importance to investigate the effects of the fluid shear and particle rotation
on the fluid forces acting on a particle by means of experiments and numerical
simulations.

Rubinow & Keller (1961) and Saffman (1965) showed that a lift force acts on
a rotating sphere in a linear unbounded shear flow by using matched asymptotic
expansions. In their analyses, the particle Reynolds number Rep(= 2aUc/ν) was
assumed to be much less than unity. Here 2a is the diameter of the sphere, Uc is
the fluid velocity on the streamline through the centre of the sphere, and ν is the
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kinematic viscosity. Saffman’s expression for the lift force on a sphere derived by
higher-order approximations is given by

FL = 6.46νρfa
2Uc(|α|/ν)1/2 − 11

8
ρfUcαa

3 + πρfUcΩa
3, (1.1)

where ρf is the fluid density, α is the fluid shear rate of the mean flow, and Ω is the
rotational angular speed of the sphere. The first and second terms on the right-hand
side are due to the fluid shear, and the third term takes account of the effect of the
rotation of the sphere. The sign of the first term is positive for positive α, and it
is negative for negative α. The lift force on a stationary (Ω = 0) sphere in a linear
shear flow always acts towards the higher-fluid-velocity side, and a rotating sphere
with clockwise rotation in a uniform unsheared flow (α = 0) generates upward lift.
Saffman (1965) has mentioned that unless the rotational speed of a freely rotating
sphere with a small particle Reynolds number is much greater than the shear rate,
the lift force due to the rotation is less by an order of magnitude than that due to
the shear. Therefore, the second and third terms on the right-hand side in (1.1) were
neglected for low particle Reynolds numbers in many previous studies.

However, expression (1.1) cannot be applied to large particle Reynolds numbers of
Rep � 1. To estimate the lift force acting on a stationary sphere in a linear shear flow
with a higher particle Reynolds number, Hall (1988) and Mollinger & Nieuwstadt
(1996) tried to measure the lift force acting on a particle in a wind tunnel, and
Dandy & Dwyer (1990) carried out three-dimensional numerical simulations for a
linear shear flow around a stationary sphere at Rep = 0.1–100. By using the results
of Saffman (1965) and Dandy & Dwyer (1990), Mei (1992) proposed an approximate
expression for the lift force for finite Rep. On the other hand, Jordan & Fromm
(1972) numerically estimated the lift force acting on a cylinder with a higher particle
Reynolds number of Rep = 400, and showed a very interesting result: the lift force
on the cylinder surface acted in the opposite direction to that found in other studies
(e.g. Saffman 1965; Dandy & Dwyer 1990). Although the difference of the lift force
direction may be due to the difference in the shape of a three-dimensional sphere
and a two-dimensional cylinder, this has not been elucidated. Therefore, it is of great
interest to numerically estimate the lift force acting on a sphere for high particle
Reynolds numbers of Rep > 100.

To investigate the effect of the rotation of a sphere, the drag and lift forces have
been measured for very high particle Reynolds numbers of Rep = 103–106 (e.g. Barkla
& Auchterlonie 1971; Rabindra 1985). Tsuji, Morikawa & Mizuno (1985) measured
the lift force on a rotating sphere for 550 6 Rep 6 1600. Salem & Oesterle (1995)
numerically investigated the interaction between the fluid shear and rotation on the
lift force acting on a rotating sphere for Rep 6 10 in a linear shear flow. However,
the lift force for arbitrary values of the fluid shear rate, rotational speed and particle
Reynolds number could not be estimated because of the lack of data.

On the other hand, the variation of the drag force with the fluid shear rate was
investigated analytically by Harper & Chang (1968) for a sphere with Rep � 1 and
numerically by Dandy & Dwyer (1990) for a sphere with 1 6 Rep 6 100. However
the effect of the rotation on the drag force was not clarified.

The purpose of this study is to investigate the effects of the fluid shear and rotation
on the drag and lift forces acting on a rotating sphere in a linear shear flow by means
of a three-dimensional numerical simulation. The computations were carried out for
1 6 Rep 6 500. The effects of both fluid shear and rotation were clarified through
the numerical predictions for three cases: a linear shear flow around a stationary
sphere, a uniform unsheared flow around a rotating sphere, and a linear shear flow
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around a rotating sphere. Furthermore, approximate expressions for the drag and
lift coefficients applicable to arbitrary shear rate and rotational speed were derived
from the numerical results. In addition to the numerical simulation, a visualization
experiment on a falling iron particle was carried out in a linear shear flow of a glycerin
solution to examine the predicted direction of the lift force acting on a stationary
sphere in a linear shear flow with a high particle Reynolds number.

2. Numerical simulation
The flow geometry and coordinate system for computations are shown in figure

1. The imposed flow is a linear shear flow around a rotating sphere. The three-
dimensional Navier–Stokes (N–S) equations were directly solved using a finite differ-
ence scheme based on the marker-and-cell (MAC) method and cylindrical coordinates
were used (figure 2). The numerical procedure used here was essentially the same as
that used by Hanazaki (1988) except for the presence of the fluid shear and boundary
conditions. The dimensionless pressure–Poisson (P–P) equation was derived by taking
divergence of the N–S equations:

∇2p =
D

∆t
− ∇ · [(V · ∇)V ] +

2

Rep
∇2D, (2.1)

and the dimensionless N–S equations are given by

∂U

∂t
+ (V · ∇)U = −∂p

∂x
+

2

Rep
∇2U, (2.2)

∂V

∂t
+ (V · ∇)V − V 2

r
= −∂p

∂r
+

2

Rep

(
∇2V − V

r2
− 2

r2

∂V

∂θ

)
, (2.3)

∂W

∂t
+ (V · ∇)W +

VW

r
= −1

r

∂p

∂θ
+

2

Rep

(
∇2W − W

r2
+

2

r2

∂W

∂θ

)
. (2.4)

The dimensionless P–P equation and N–S equations were solved alternately. Here D,
V , ∇2 and Rep are defined by

D = ∇ · V , (2.5)

V = (Vx, Vr, Vθ) = (U,V ,W ), (2.6)

∇2 =
∂2

∂x2
+

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2
, (2.7)

Rep =
2aUc

ν
, (2.8)

where a is the radius of the sphere, ν is the kinematic viscosity, and Uc is the mean
velocity of the fluid on the streamline through the centre of the sphere.

The boundary condition of the velocity upstream of a sphere is given in dimen-
sionless form by

U = 1 + α∗y, (2.9)

and the boundary condition on the outer boundary, except upstream, is

∂V

∂x
= 0. (2.10)
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Figure 1. Coordinate system for a rotating sphere in a linear shear flow.
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Figure 2. Side view of numerical grids on the centreplane (z = 0).

Here α∗ is the dimensionless shear rate of the fluid:

α∗ =
a

Uc

∂U

∂y
. (2.11)

On the surface of a rotating sphere with an angular speed of Ω, the three components
of the fluid velocity are given by

U =
aΩ cos θ sinφ

Uc

= Ω∗cos θ sinφ, (2.12)

V =
aΩ cos θ cosφ

Uc

= Ω∗cos θ cosφ, (2.13)

W = 0, (2.14)

where Ω∗ is the dimensionless rotational angular speed:

Ω∗ =
a

Uc

Ω. (2.15)

The computations were performed for particle Reynolds numbers of 1 6 Rep 6 500
(Rep = 1, 2, 5, 10, 20, 50, 100, 200, 300, 400 and 500), shear rates of 0 6 α∗ 6 0.4
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Figure 3. Velocity and vorticity fields around a stationary sphere in a uniform unsheared flow on
the centreplane (z = 0) for Rep = 200: (a) velocity field; (b) vorticity field.

(α∗ = 0, 0.1, 0.2, 0.3 and 0.4), and angular speeds of 0 6 Ω∗ 6 0.25 (Ω∗ = 0, 0.063,
0.16 and 0.25). In addition, the lift forces on a stationary sphere with Rep = 0.5 and 3
were computed for α∗ = 0, 0.1 and 0.4 (Ω∗ = 0) to compare with the values obtained
from the previous approximate expressions of Saffman (1965), McLaughlin (1991)
and Mei (1992).

The drag and lift forces are the components of the fluid force acting on a sphere in
the x- and y-directions, FD and FL, and they can be given by the sum of the pressure
and viscous force contributions:

FD = FD,p + FD,f = −
∫

S

pex · n dS +

∫
S

n · τ · ex dS, (2.16)

FL = FL,p + FL,f = −
∫

S

pey · n dS +

∫
S

n · τ · ey dS, (2.17)
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Figure 4. Comparison of the drag coefficient CD for a stationary sphere in a uniform unsheared
flow: ◦, this study; ——, Morsi & Alexander (1972).

where τ is the viscous stress tensor. The drag and lift coefficients are defined by

CD =
FD

1
2
ρfU2

cπa
2
, (2.18)

CL =
FL

1
2
ρfU2

cπa
2
, (2.19)

where ρf is the fluid density.
By using a grid generation method developed by Thames et al. (1977), the grid

points were concentrated near the sphere in the (x, r)-plane. The maximum sizes of the
computational domain were 20 and 10 radii in the x- and r-directions, respectively.
The (x, r, θ)-coordinate system was transformed to the (η, ξ, θ)-coordinate system
with an equally grid spacing. The details of the coordinate system are described in
Hanazaki (1988). The grid points used in this study were 35×61×48 in the ξ-, η- and
θ(0 6 θ 6 2π) directions. To calculate the flow around a sphere accurately, several
mesh points are required in the boundary layer. By using the above grid generation,
ten or more the mesh points existed in the depth of the boundary layer which can

be estimated as 1/Re
1/2
p . The transformed governing equations were discretized to

construct the finite difference formulation. The nonlinear terms in the N–S equations
were approximated by a third-order scheme of Kawamura & Kuwahara (1984), and
the other spatial derivatives were approximated by a second-order central difference
scheme. Computations were repeated with a dimensionless time step of ∆t = 0.01
until almost steady state was attained. However, oscillation of the lift force acting on
a sphere with a high particle Reynolds number (Rep > 300) was generated by the
wake due to the flow separation behind the sphere, and therefore lift force was found
by taking the time-averaged value over 30000 time steps (including several decades
of the oscillation) during a quasi-steady state. The CPU time required for each case
was about 3000 s on a NEC SX-3 super computer of the Center for the Global
Environmental Research, National Institute for Environmental Studies.

3. Results and discussion
3.1. Drag and lift on a stationary sphere

Figure 3 shows the velocity and vorticity fields around a stationary sphere in a uniform
unsheared flow (Rep = 200, α∗ = 0, Ω∗ = 0) on the centreplane (z = 0). It is found
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Figure 5. Velocity and vorticity fields around a stationary sphere in a linear shear flow on the
centreplane (z = 0) for Rep = 200 and α∗ = 0.2: (a) velocity field; (b) vorticity field.

that flow separations appear behind the sphere on both its upper and lower sides, and
that symmetry exists with regard to the x-axis. Also, the points of flow separation
(where tangential viscous stress is zero on the surface) tended to gradually move
upstream with increasing Rep. Figure 4 shows the variation of the drag coefficient CD
with the particle Reynolds number Rep (0.5 6 Rep 6 500), together with the results
from Morsi & Alexander (1972), who proposed an expression CD as a function of
Rep over a wide range of Rep < 50000. The present CD is in good agreement with
their expression. On the other hand, although the time-averaged lift force was zero in
an unsheared flow, remarkable oscillation of the instantaneous lift force occurred for
the high Reynolds number of Rep > 300. The Strouhal numbers based on the vortex
shedding frequency f (St = 2af/Uc) were 0.128, 0.138 and 0.170 for Rep = 300, 400
and 500, respectively. St was obtained using the time history of the lift coefficient
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Figure 6. Drag coefficient CD for a stationary sphere in a linear shear flow: ◦, α∗ = 0;
4, α∗ = 0.1; �, α∗ = 0.2; O, α∗ = 0.4.

CL. Sakamoto & Haniu (1995) estimated St of the vortex shedding from a sphere
in unsheared and shear flows in a water channel by means of flow visualization and
velocity measurement (200 6 Rep 6 3000). The present values of St are quantitatively
in good agreement with the Sakamoto & Haniu’s (1995) results.

In order to clarify the effects of the fluid shear on the drag and lift, the drag
and lift coefficients were calculated for a stationary sphere in a linear shear flow
(0.5 6 Rep 6 500, 0 6 α∗ 6 0.4 and Ω∗ = 0). Figure 5 shows the velocity and vorticity
fields for this case (Rep = 200, α∗ = 0.2) on the centreplane (z = 0). It is clearly
illustrated that the wakes due to flow separation on the upper and lower sides behind
the sphere are not symmetric with respect to the x-axis in a uniform unsheared flow.
The drag coefficient CD is plotted as a function of Rep against the dimensionless shear
rate α∗ in figure 6. The value of CD rapidly decreases with increasing Rep. However,
CD increases with increasing α∗ for a fixed value of Rep, and the dependence of CD
on α∗ is more obvious for higher Rep. The difference in CD between unsheared and
sheared cases reaches about 10% at Rep = 500 and α∗ = 0.4. The trend of CD with α∗
is similar to that of Dandy & Dwyer (1990).

To estimate the lift force on a sphere in a shear flow, Saffman (1965) analytically
derived the expression (1.1) for a rotating sphere in a linear shear flow by using the
following assumptions:

Rep � 1, (3.1)

ReΩ

(
=
Ω(2a)2

ν

)
� 1, (3.2)

Reα

(
=
α(2a)2

ν

)
� 1, (3.3)

ε

(
=
Re

1/2
α

Rep
= 1.414

(
α∗

Rep

)
1/2
)
� 1. (3.4)

From equation (1.1), we can derive the lift coefficient:

CL = 5.816

( |α∗|
Rep

)1/2

− 0.875α∗ + 2Ω∗. (3.5)
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The contributions of the second and third terms on the right-hand side of (3.5) to
the total lift coefficient, CL

(2) and CL
(3), are less than 10% for Rep < 1 as shown in

figure 7. Here, the rotational angular speed Ω∗ was set to 0.5α∗ on the assumption
that the rotation of a freely rotating sphere is induced by the fluid shear. Therefore,
the second and third terms are not so important for Rep < 1. McLaughlin (1991) also
extended the Saffman’s analysis for smaller ε in (3.4), and Mei (1992) obtained

CL

CL,Sa
= 0.443J, (3.6)

from the McLaughlin’s (1991) results. Here the subscript Sa means the value given
by Saffman’s expression (3.5) neglecting the second and third terms on the right-hand
side. The non-dimensional quantity J is given by

J = J(ε) ≈ 0.6765{1 + tanh [2.5log10(ε+ 0.191)]}{0.667 + tanh [6(ε− 0.32)]}, (3.7)

Equation (3.7) was constructed by Mei (1992) from the results of McLaughlin (1991)
for 0.1 6 ε 6 20. By carefully examining the numerical results of Dandy & Dwyer
(1990), Mei (1992) proposed the following formula for the lift coefficient:

CL

CL,Sa
=

{
(1− 0.3314α∗1/2) exp (− 1

10
Rep) + 0.3314α∗1/2, Rep 6 40

0.0524(α∗1/2Rep)1/2, Rep > 40.
(3.8)

Figure 8 shows comparisons of the lift coefficient CL obtained by the present simula-
tion with the approximate expressions given by Saffman (1965), McLaughlin (1991)
and Mei (1992) for a stationary sphere in a linear shear flow with α∗ = 0.1 and 0.4. To
clearly show the difference including the change of the sign of CL, both logarithmic
(a) and linear (b) graphs are used. For Saffman’s expression (3.5), the second and
third terms on the right-hand side were neglected here. CL rapidly decreases with
increasing Rep in the low particle Reynolds number range of Rep < 10. Although the
present CL deviates from the predictions by Saffman (1965) and Mei (1992), it is in
good agreement with the predictions by McLaughlin (1991) especially for Rep 6 5.
However, in the high particle Reynolds number range, the present CL shows negative
values in contrast with the previous results. The negative values of CL are magnified
in figure 9. CL becomes negative Rep > 60, and the negative value increases with
increasing α∗. In previous studies, the lift force has been considered to act from the
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Figure 8. Comparisons of lift coefficient CL for a stationary sphere in a linear shear flow between
the present results and the previous results by Saffman (1965), McLaughlin (1991) and Mei (1992):
(a) logarithmic coordinates; (b) linear coordinates: ◦, α∗ = 0.1 (this study); 4, α∗ = 0.4 (this study);
——, α∗ = 0.1 (Saffman 1965); – – – , α∗ = 0.4 (Saffman 1965); , α∗ = 0.1 (McLaughlin 1991);

, α∗ = 0.4 (McLaughlin 1991); , α∗ = 0.1 (Mei 1992); , α∗ = 0.4 (Mei 1992).
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Figure 9. Lift coefficient CL for a stationary sphere in a linear shear flow: 4, α∗ = 0.1; �, α∗ = 0.2;�, α∗ = 0.3; O, α∗ = 0.4. The distributions of CL in figure 8 are magnified to show more clearly
where the lift force becomes negative.
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Figure 10. Strouhal number for a stationary sphere in a linear shear flow.
Symbols as in figures 6 and 9.
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Figure 11. Contributions of pressure CL,p and viscous force CL,f acting on a stationary sphere to
the total lift coefficient CL for α∗ = 0.2: 4, CL,p; �, CL,f; ◦, CL.

lower-fluid-velocity side to the higher-fluid-velocity side (CL > 0). Only Jordan &
Fromm (1972) suggested the negative CL for a cylinder with Re = 400 in a linear
shear flow by using a two-dimensional numerical simulation. However, they did not
give a physical explanation for it.

Figure 10 shows the variation of the Strouhal number St obtained from the time
history of CL with the fluid shear rate α∗. St increases with increasing α∗. This trend
was first shown by Sakamoto & Haniu (1995), who thought the increase of St was
caused by the increase of the entrainment of vorticity on the high-velocity side. A
comparison of figure 5 with figure 3 also suggests that the entrainment of vorticity is
promoted by the wakes-unsymmetric with respect to the x-axis.

To investigate the generation mechanism of the negative lift in figures 8 and 9, the
contributions of pressure CL,p and viscous force CL,f to the total lift CL for α∗ = 0.2 are
shown in figure 11. The results show that both coefficients CL,p and CL,f change their
signs from positive to negative in the range 1 6 Rep 6 100. Figures 12 and 13 show
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Figure 12. Surface contours of the y-component of the instantaneous pressure on the surface of a
stationary sphere in a linear shear flow for α∗ = 0.2: (a) Rep = 1; (b) Rep = 200. The red and blue
lines indicate high and low values of the pressure lift contribution.
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Figure 13. Surface contours of y-component of instantaneous viscous force on the surface of a
stationary sphere in a linear shear flow for α∗ = 0.2: (a) Rep = 1; (b) Rep = 200. The red and
blue lines indicate positive and negative values of the viscous lift contribution. The thick line in (b)
shows the zero value of the instantaneous viscous force.

the surface contours of the y-component of the instantaneous pressure and viscous
force on the sphere for Rep = 1 and 200. The variations of CL,p and CL,f with Rep in
figure 11 can be explained by using figures 12 and 13, as follows. Strong downward
pressure appears on the front side of the sphere for both Rep = 1 and 200, as indicated
by arrows A in figures 12(a) and 12(b). However, the integrated value of the pressure
over the whole surface CL,p becomes positive for the low particle Reynolds number of
Rep = 1, since the upward pressure is widely distributed over the bottom of the sphere
(figure 12a). For the high particle Reynolds number of Rep = 200, pressure also acts
strongly on both the upper and lower parts of the rear side of the sphere (see arrows
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Figure 14. Sketch of the experimental apparatus.

B and C in figure 12b). The values of the pressure on the upper and lower parts are
roughly comparable, and therefore the strong downward pressure on the front side of
the sphere (arrow A) changes the sign of CL,p to negative. The pressure acting on the
two places on the rear side of the sphere is attributed to the flow separation behind
the sphere. In fact, the flow separation appears at the two places on the rear side
of the sphere (see figure 3a). On the other hand, the integrated value of the viscous
force over the whole surface CL,f shows positive value for Rep = 1 because the strong
upward viscous force is widely distributed over the lower part of the rear side (arrow
C in figure 13a), compared with the strong downward viscous force on the upper part.
For Rep = 200, the downward viscous force is widely distributed over the surface of
the sphere as shown in figure 12(b), and therefore CL,f for the high particle Reynolds
numbers takes negative values. The reason why CL of Dandy & Dwyer (1990) was
very different for high Rep cannot be clarified here. However, recently, Legendre &
Magnaudet (1998) who considered the same problem but for a bubble also doubted
the accuracy of the results of Dandy & Dwyer (1990). Actually, the present variations
of CL,p and CL,f with Rep (see figure 11) show very similar trends to those of Legendre
& Magnaudet (1998) (the contribution of CL,f to CL decreases with increasing Rep,
and CL,f becomes negative for high Rep) but not to those of Dandy & Dwyer (1990)
(CL,f has a positive value and represents the major contribution to CL whatever Rep),
despite the difference between a solid particle and a bubble.

3.2. Experimental verification of negative lift coefficient

To verify the predictions of the negative lift coefficient experimentally, particle motion
was observed in a linear shear flow produced between two belts moving in opposite
directions. The apparatus used here was similar to those of Graham & Bird (1984),
Kariyasaki (1987) and Cherukat, McLaughlin & Graham (1994) (figure 14). In order
to increase the particle Reynolds number and to minimize the turbulence fluctuations
in the flow, we dropped an iron particle with diameter of 2a (= 2.4, 3.2 or 4.0 mm) and
the density of ρp = 7980 kg m−3 into a solution of glycerin and water with kinematic
viscosity νf = 8.96×10−6 m2 s−1. Instantaneous vertical (x) and spanwise (y) velocities
in the linear shear flow between the two belts were simultaneously measured using a
two-colour laser-Doppler velocimeter (DANTEC 55X). The belt speed was carefully
adjusted to get adequate values of Rep and α∗ and very low turbulence levels. The

measured values of the time-averaged vertical velocity Uf [m s−1] with y [m] were
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2a (mm) Rep α∗ R−

2.4 98.8 0.0064 0.535
3.2 167.1 0.0068 0.660
4.0 276.1 0.0064 0.765

Table 1. Experimental conditions and the ratio of the number of particles falling in the negative
y-direction to the total number of sampled particles.

1.0

0.5

0 100 200 300 400

Rep

R–

Figure 15. The relation between the ratio R− of the number of the particles falling towards the
left-hand side of y < 0 to the total number of sampled particles and the particle Reynolds number
Rep in a linear shear flow.

well approximated in the region −0.35 6 x 6 0.35 [m] and −0.02 6 y 6 0.02 [m] by

Uf = 1.96y. (3.9)

Here the origin x = 0 and y = 0 corresponded to the center of the apparatus (see
figure 14). It was also found that the vertical and spanwise velocity fluctuations in the
flow were negligibly small in the region −0.35 6 x 6 0.35 [m] and −0.02 6 y 6 0.02
[m]. The iron particle was dropped into the linear shear flow field from a particle
injection pipe attached on the centre (y = 0) of the roof of the apparatus. The
trajectory of the particle was recorded at intervals of 0.005 s in the high-speed video
system (NAC HSV-400). The rotation rate of the falling particle was also measured
by painting half of the white particle black, but it was negligibly small in the weakly
sheared flow. Therefore we could neglect the effect of particle rotation on the lift
force in this experiment. The measurements were conducted for 200 particles each
size (totally 600 particles). For each size, we counted the number of particles falling
to the right-hand side (the lower-fluid-velocity side) or to the left-hand side (the
higher-fluid-velocity side) in the linear shear flow (see figure 14).

The particle Reynolds number, Rep, dimensionless fluid shear rate, α∗ (= (a/Urc)

(∂Ur/∂y)), and the ratio of the number of the particles falling towards the left-hand
side (in the negative y-direction) to the total number of sampled particles, R−, are
listed in table 1. Here, Ur (=| Uf −Up |) is the difference between the falling velocity

of the particle Up and the vertical velocity of the liquid Uf . Urc is the relative velocity

Ur of the centre of the particle and it was almost equal to Up near y = 0. Figure 15
shows the correlation between R− and Rep. Although the values of α∗ were smaller
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Figure 16. Velocity and vorticity fields around a rotating sphere in a uniform unsheared flow on
the centreplane (z = 0) for Rep = 200 and Ω∗ = 0.16: (a) velocity field; (b) vorticity field.

than the values used for the present simulation, it is clearly seen that R− increases with
increasing Rep and almost 80% of the 200 particles fall towards the left-hand side for
Rep = 276.1. This suggests that the lift force acts towards the lower-fluid-velocity side
from the higher-fluid-velocity side for high particle Reynolds numbers. The direction
of particle movement is exactly opposite to Saffman’s (1965) expression, but it agrees
well with the present numerical results shown in figure 9.

3.3. Drag and lift on a rotating sphere

To clarify the effects of the rotation of the sphere on the drag and lift forces,
computations were conducted in a uniform unsheared flow around a rotating sphere
for 1 6 Rep 6 500, α∗ = 0 and 0 6 Ω∗ 6 0.25. Figure 16 shows the velocity and
vorticity fields for this case (Rep = 200, Ω∗ = 0.16) on the centreplane (z = 0).
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Figure 17. Coefficients of drag and lift forces acting on a rotating sphere in a uniform unsheared
flow: (a) drag coefficient CD; (b) lift coefficient CL; ◦, Ω∗ = 0; 4, Ω∗ = 0.063; �, Ω∗ = 0.16;�, Ω∗ = 0.25.

Comparison of these fields with figure 3 shows that the rotation acts to shift the
points of flow separation downstream on the upper side and upstream on the lower
side. Figures 17(a) and 17(b) show the variations of the drag coefficient CD and lift
coefficient CL with the rotational angular speed of the sphere Ω∗ and the particle
Reynolds number Rep. Figure 17(a) shows the similar trend of CD with Ω∗ to that
of CD with α∗ in figure 6: CD increases with increasing Ω∗. The difference in CD
between Ω∗ = 0 and Ω∗ = 0.25 reaches about 10% at Rep = 500. On the other hand,
CL does not change its sign with increasing Rep in contrast to a stationary sphere
in a linear shear flow, and it tends to approach a constant value for Rep > 200 for
a fixed rotational speed. It is also found that the asymptotic value increases with
increasing Ω∗. The measurements of CL by Tsuji et al. (1985) ranged from 0.05 to
0.3 for 550 6 Rep 6 1600 and 0.1 6 Ω∗ 6 0.5. The measured values are close to the
present asymptotic values for large Rep in figure 17(b), whereas the values of 2Ω∗ by
Saffman’s expression (3.5) were larger than the asymptotic values. The reason why CL
is always positive for a rotating sphere is that the upward pressure acts at the bottom
of the sphere as indicated by arrow D in figure 18(a). That is, the strong pressure
CL,p contributes to the total lift CL as shown in figure 19. Figure 19 also shows that
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y(a) y(b)

x

D

Figure 18. Surface contours of the y-component of instantaneous pressure and viscous forces acting
on a rotating sphere in a uniform unsheared flow for Rep = 200 and Ω∗ = 0.16: (a) pressure; (b)
viscous force. The red and blue lines indicate high and low values of the pressure lift contribution
in (a), and positive and negative values of the viscous lift contribution in (b), respectively. The thick
line in (b) shows the zero value of the instantaneous viscous force.

y

x

B

Figure 22. Surface contours of the y-component of the instantaneous pressure on a rotating sphere
in a linear shear flow for Rep = 200, α∗ = 0.2 and Ω∗ = 0.16. The red and blue lines indicate high
and low values of the pressure lift contribution.

the lift coefficient due to the viscous force CL,f is always positive. The positive value
of CL,f can be understood from the countours of the instantaneous viscous force in
figure 18(b). The contour for zero viscous force shifts downward and therefore the
positive viscous force widely distributed on the surface of the sphere generates the
upward lift.

Figure 20 shows the variation of the Strouhal number St with Ω∗. The trend of
St with Ω∗ is similar to that of St with α∗: St increases with increasing Ω∗. As the
three-dimensional velocity and vorticity fields near the shear layer were not analysed
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Figure 19. Contributions of pressure CL,p and viscous force CL,f acting on a rotating sphere to the
total lift coefficient CL for Ω∗ = 0.16: 4, CL,p; �, CL,f; ◦, CL.
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Figure 20. Strouhal number for a rotating sphere in a uniform unsheared flow.
Symbols as in figure 17.

here, the reason for the increase of St cannot be clarified. However, the explanation
of the increase of St with α∗ leads us to conclude that the increase of St is caused by
the increase of the entrainment of fluid breaking vorticity away from the shear layer
on the bottom of the sphere.

It is of great interest to investigate whether the drag and lift forces acting on a
rotating sphere in a linear shear flow can be estimated from the drag and lift forces
both on a stationary sphere in a linear shear flow with the same shear rate and on
a rotating sphere with the same rotational speed in a uniform unsheared flow. If
the drag and lift forces can be estimated in this way, the effects of the fluid shear
and rotation can be treated independently. The computations for a linear shear flow
around a rotating sphere were carried out for 1 6 Rep 6 500, 0 6 α∗ 6 0.4 and
0 6 Ω∗ 6 0.25. Figures 21(a) and 21(b) show the variation of the lift coefficient with
the dimensionless rotational speed Ω∗ for Rep = 1 and 200. The solid lines indicate
the lift coefficient CL (= Cα+Ω

L ) for a rotating sphere in a linear shear flow, and the
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Figure 21. Comparisons of lift coefficient CL for a rotating sphere in a linear shear flow (open
symbols) with the sum of the lift coefficients for a stationary sphere in a linear shear flow with the
same α∗ and for a rotating sphere with the same Ω∗ in a uniform unsheared flow (solid symbols):
(a) Rep = 1; (b) Rep = 200. Symbols as in figures 6 and 9.

dashed lines show the sum of the lift coefficient Cα
L for a stationary sphere in a linear

shear flow with the same α∗ and the lift coefficient CΩ
L for a rotating sphere with the

same Ω∗ in a uniform unsheared flow. The values of CL (= Cα+Ω
L ) are close to those

of Cα
L+CΩ

L for Rep = 1, whereas for Rep = 200, they are different. The variation of CL
with Ω∗ is very complicated for high Rep. This means that the effects of the fluid shear
and rotation on a rotating sphere in a shear flow cannot be independently treated for
high particle Reynolds numbers. Although comparisons of the drag coefficients CD
are not shown here, the behaviour of CD was the same as in the case of CL in figure
21. Of course, in the case of CD , the deviations for a stationary sphere in a uniform
unsheared flow were considered. Furthermore, for the low particle Reynolds numbers
of Rep < 1, the deviations were almost zero. This means that the effects of the fluid
shear and rotation on CD for a rotating sphere in a linear shear flow are negligibly
small for Rep < 1, and therefore CD can be estimated by the expression of Morsi
& Alexander (1972). The reason why Cα+Ω

D or Cα+Ω
L cannot be estimated by using

Cα
D and CΩ

D or Cα
L and CΩ

L for high particle Reynolds numbers and why they have
complicated variations for Ω∗ is that the flow separation is strongly affected by both
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Rep K0 K1 K2 K3 K4 K5 K6

1 0 −1.804× 10−15 −1.726× 10−18 3.296× 10−18 −1.010× 10−14 −1.114× 10−17 4.286× 10−17

5 1.417× 10−2 1.445× 10−3 1.773× 10−3 −3.404× 10−3 6.289× 10−2 5.676× 10−2 −1.407× 10−1

10 2.298× 10−2 2.237× 10−3 5.706× 10−3 −6.871× 10−3 1.150× 10−1 −2.343× 10−1 4.205× 10−1

50 6.473× 10−2 6.634× 10−3 −6.437× 10−3 1.154× 10−2 2.981× 10−1 2.518× 10−2 −2.655× 10−1

100 6.523× 10−2 9.248× 10−3 3.358× 10−3 −4.478× 10−3 4.177× 10−1 −1.238× 10−1 2.676× 10−1

200 1.216× 10−1 1.125× 10−1 −4.687 6.343 4.599 7.590× 101 −1.641× 102

300 1.344× 10−1 1.227× 10−1 −5.416 7.347 9.776 7.196× 101 −2.519× 102

400 2.101× 10−1 1.336× 10−1 −5.885 7.875 1.017× 101 5.217× 101 −1.921× 102

500 2.440× 10−1 1.285× 10−1 −6.303 8.509 9.826 4.141× 101 −1.622× 102

Table 2. Constants in (3.10).
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Rep K0 K1 K2 K3 K4 K5

1 4.815× 10−1 3.578 9.741× 10−1 7.523 −3.252× 101 1.419× 104

5 −7.830× 10−1 1.746 7.283× 10−1 3.975 −1.482× 101 6.710× 103

10 −9.408× 10−2 1.886× 10−1 6.801× 10−1 8.419× 10−2 −7.252× 10−1 1.161× 103

50 −1.141× 10−1 1.533× 10−1 7.108× 10−1 2.455× 10−1 −1.034 3.668× 102

100 −1.823× 10−1 1.242× 10−1 9.261× 10−1 4.736× 10−1 −1.592 5.660× 102

200 −4.269× 10−1 2.455× 10−1 1.244 1.002 −1.843 −8.679× 102

300 −1.112 1.101 1.269 2.386 −9.355 1.938× 103

400 −9.983× 10−1 9.250× 10−1 1.275 1.470 −5.201 3.065× 102

500 −6.926× 10−1 5.305× 10−1 1.239 1.389 −4.556 5.207× 102

Table 3. Constants in (3.11).

shear and rotation. In fact, as shown in figure 22 (see page 199), the pressure acting
on the upper rear part indicated by the arrow B for a rotating sphere in a linear
shear flow is much weaker than that for a stationary sphere in a linear shear flow,
and the maximum pressure point on the upper rear part slightly shifts downstream
compared to the point indicated by the arrow B in figure 12(b).

Because of the complicated variations of the drag and lift coefficients with the
shear rate α∗ and rotational speed Ω∗, it is not easy to give CD and CL for a rotating
sphere in a linear shear flow for arbitrary α∗ and Ω∗ especially for high particle
Reynolds numbers. However, to simulate rotating particle motion in an arbitrary
shear flow, approximate expressions for CD and CL for arbitrary α∗, Ω∗ and Rep will
be required. Therefore, by using the predictions of CD(Rep, α

∗, Ω∗) and CL(Rep, α
∗, Ω∗)

for 0 6 α∗ 6 0.4 and 0 6 Ω∗ 6 0.25, the following expressions were proposed for nine
values of Rep = 1, 5, 10, 50, 100, 200, 300, 400 and 500:

CD(Rep, α
∗, Ω∗) = CD(Rep, α

∗ = 0, Ω∗ = 0)

×[1 +K0α
∗ + (K1 +K2α

∗1.5 +K3α
∗2.0)Ω∗0.5 + (K4 +K5α

∗ +K6α
∗2.0)Ω∗4.0], (3.10)

CL(Rep, α
∗, Ω∗) = K0α

∗0.9 +K1α
∗1.1 + (K2 +K3α

∗ +K4α
∗2.0 +K5α

∗9.5)Ω∗, (3.11)

where CD(Rep, α
∗ = 0, Ω∗ = 0) is the drag coefficient for a stationary sphere in

a uniform unsheared flow. The values of K0–K6 in (3.10) and (3.11) are listed in
tables 2 and 3. By interpolating the values of CD and CL from (3.10) and (3.11)
for nine values of Rep, CD and CL were calculated for arbitrary particle Reynolds
numbers (1 6 Rep 6 500). Figures 23 and 24 compare the interpolated values of
CD and CL from (3.10) and (3.11) with the numerical predictions. The value of
CD(Rep, α

∗ = 0, Ω∗ = 0) is given Morsi & Alexander (1972) here. Both interpolated
and simulated values well agree. The good agreement suggests that CD and CL for a
rotating sphere in a linear shear flow for Rep 6 500, 0 6 α∗ 6 0.4 and 0 6 Ω∗ 6 0.25
can be well estimated by using (3.10) and (3.11).

4. Conclusions
The numerical simulation was done for a linear shear flow around a rotating sphere

over a wide range of the particle Reynolds number (1 6 Rep 6 500). The main results
from this study can be summarized as follows.

(i) Both the fluid shear rate and the rotational angular speed of a sphere promote
the drag coefficient. Their effects are enhanced with increasing the particle Reynolds
number.
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Figure 23. Comparisons of the drag coefficient CD obtained by interpolating the values from the
approximate expressions in (3.10) for arbitrary α∗ and Ω∗ with that obtained by the three-dimensional
numerical simulations: (a) Ω∗ = 0; (b) Ω∗ = 0.063; (c) Ω∗ = 0.16; (d) Ω∗ = 0.25. The lines for
several α∗ show the interpolated results from (3.10) and the symbols show the simulated values.
Symbols as in figures 6 and 9.

(ii) The lift coefficient for a stationary sphere in a linear shear flow rapidly decreases
with increasing particle Reynolds number, and it has negative values in the range
Rep > 60. This means that the lift force acts from the higher-fluid-velocity side to
the lower-fluid-velocity side for high particle Reynolds numbers. The negative lift is
attributed to the flow separation behind the sphere.

(iii) The lift coefficient for a rotating sphere in a uniform unsheared flow tends to
approach to a constant value for high particle Reynolds numbers Rep > 200. The
asymptotic value increases with increasing the rotational speed.

(iv) Equations (3.10) and (3.11) estimate well the drag and lift coefficients for a
rotating sphere in a linear shear flow with 1 6 Rep 6 500.

(v) The Strouhal number of the vortex shedding from a sphere increases with
increasing both the fluid shear rate and the rotational angular speed of a sphere.

The authors thank Dr H. Hanazaki of Tohoku University for his kind suggestion in
remaking his original program code for this study, and they also thank K. Fujikawa,
K. Nakamura, T. Yamashita and Y. Shibata for their great help in conducting
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Figure 24. Comparisons of the lift coefficient CL obtained by interpolating the values from the
approximate expression in (3.11) with that obtained by the three-dimensional numerical simulations:
(a) Ω∗ = 0; (b) Ω∗ = 0.063; (c) Ω∗ = 0.16; (d) Ω∗ = 0.25. The lines for several α∗ show the interpolated
values from (3.11) and the symbols show the simulated values. Symbols as in figures 6 and 9.
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